黑客24小时接单的平台

黑客服务,黑客业务,破解密码,网站入侵,入侵网站

增长黑客数据分析面试(大数据分析 面试)

本文目录一览:

数据分析师面试要准备什么?

1.简历

大家都知道面试一定要带简历,那么怎样才能制作出一份让面试官满意的简历呢。这里小编建议大家可以试试STAR法则,可以着重凸显出自己在数据分析项目中取得的成绩。

另外简历一定要结合招聘要求来制作,与招聘要求的匹配度越高才更容易被hr发现,不要偷懒,用一份简历打天下。

2.投递

投递简历最好不要海投。如果中意一家公司,可以选择多平台投递。

3.面试

终于到了最关键的环节了。大体上介绍一下自己接触过的项目,这样做的好处是,留有余地,一般面试官都会根据你的介绍来展开提问,如果说得过于详细,面试官有可能会问一些深层次的问题,答不上来就尴尬了。

数据分析面试都会有技术性问题,Excel+SQL+python/R这几样工具都是必考,关于这几样工具的理论、实操大家一定要详细掌握。数据分析的目的就是促进企业的业务增长,关于公司的业务方面,大家也要多多了解,一般面试官会根据公司业务做一个假设案例让你来进行数据分析。

关于数据分析师面试要准备什么,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

数据分析面试注意什么

数据分析面试注意事项如下:

1、专业经验

介绍项目经验:

参考STAR原则:即针对Situation(情景)、Task(任务)、Action(行动)和Result(结果)四个维度的追问项目经验,从而深入了解面试者的能力和特质

重点通过面试者具体在何时,在什么样的项目环境、范围中,以什么样的团队分工,用怎样的知识技能经验,具体完成什么任务?并包括对困难的处理,对结果的反思。

2、基本工具:

互联网公司的数据分析师使用Excel+SQL+R/Python的比较多,建议先看下JD上的要求,做好相关的准备。Excel至少要会用数据透视表和vlookup,VBA很有用但在面试中问到的不多,具体看JD要求。对于要求使用SQL的公司,一般会安排笔试或上机测试。也有公司不要求使用SQL,比方说一些BI比较成熟、业务发展比较慢的公司,或者一些使用第三方Saas服务的小公司。统计工具一般要求会一种就可以了,建议使用R或者Python,一方面是因为公司会要求尽量使用开源工具,另一方面可以让面试官进行针对性的提问。如果你使用的是面试官不太了解的工具,就丢掉了一个重要的加分项。对于应届生来说,是加分越多越好,而不是犯的错误越少越好。

3、行业了解

通过让面试者对自己所处行业的分析,以及跨行业的对比,了解面试者是否具备宽阔的视野和对外部环境敏感的分析意识。

其实相对于数据分析技术来说,企业更注重的是分析师的综合能力。这些能力包括快速的学习能力、良好的沟通能力、清晰的逻辑分析能力、高度的概括归纳能力,当然还有最基本的数据分析能力。

所以你们看到数据分析能力是最基本的,这里包括数据分析的知识、思路、算法、模型、工具。

在考察完基本的数据分析能力后,企业其实最关心的不是这个数据分析师会多少种算法、懂得多少个模型。企业应该关心的是数据分析师到底能不能帮你解决实际问题,也就是数据分析的工作到底能不能落地。

所谓的落地就是,分析师能不能发现问题、问题归因、验证假设、提出解决方案、方案的投入产出与决策建议、方案落实的效果分析以及调优、方案的总结和未来项目的风险规避。

人人都应学会的4个数据分析思路

人人都应学会的4个数据分析思路

数据分析能力对于一名产品经理来说是最基本的能力。

在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产品优化;校招的面试官可能会问小伙伴们关于分析数据的思维;在产品经理的日常工作当中,要时长盯着数据的报表来分析产品的健康程度。本文不再对一些基本的数据定义再做描述,而是从分析的思路总结了一些心得,欢迎各位一起来讨论。

1.看数据的维度

在对一款产品或者一款产品的其中的一个模块进行分析时,我们可以从两个大维度去分析数据。

首先是从广阔的视角先去查看数据,这里需要对该产品所处的行业数据有一个清晰的了解,该产品所处的行业自己所处的市场占有率的排名,一般市场占有率指的是用户的占有量,一般从行业报告可以看出大概的数据。

然后接下来需要分析这款产品的总的数据情况,比如下载量、DAU、WAU、MAU等,以及该产品的最核心的数据是什么,并且如何有可能从侧面去了解这款产品的竞品的相关数据是什么。

当了解完以上这些总体的信息,我们心中应该对自己所负责的产品有了一个宏观的概念,自己在行业内所处的位置,以及现在最需要提升哪些数据指标都有了一个清晰的认识。接下来就可以从大纬度切入到小纬度,进一步去分析一些细节的数据。例如重要的数据信息,包括用户的基本的构成信息,每个模块自己建立的漏斗信息等。一般在做分析的时候应该注意的是数据的异常现象,出现局部的极值(包括极大值和极小值)都需要进行分析。

2.什么才是好的数据指标?

在做数据分析的过程中,我们需要了解什么样的数据才是好数据,如果单纯地去看一个数据是没有太大意义的,数据本身也具有相应的欺骗性,比如从运营同学那得到了日新增用户数1W,那么单纯看这个数据没有什么意义,我们可以说这个数据很好,因为看上去很大,但是你可能没有看到同期的数据,有可能昨天的数据达到了2W。

第一,好的数据一定是首先最好是以比率的形式存在的,不要绝对数,要相对数据。

比如上面的那个数据我们换成增长率,换成环比这个数据,我们就可以进一步的了解到这个数据的好坏。

第二,就是通过对比来判断数据的好坏。

我们将数据的日增长量做成一个折线图,从折线图我们就能看出这个数据是在高点还是在低点。通过对比,我们就会得知这个数据所处的位置是什么样的。另外,通过对比不同的渠道,对比不同的版本,对比不同的用户群等不同纬度的数据,都可以从侧面反映出这个数据的真实情况。

第三,数据不是一成不变的情况,要动态的去看数据。

单纯只看一个点的数据情况是没有意义的,我们要在数据中加入时间的纬度。引入一段单位的时间去看待数据整体的变化趋势,这样才能更为客观的判断产品的健康程度。

3.发现数据异常后如何分析?

有时候从总量的角度是无法洞察出一些问题的。比如在某段时间内,下载量出现了下跌,我们需要去找到这个当中问题出现在哪里。从总量的角度看,安卓的渠道要比IOS的总量大很多,这并不能说明问题。那么我们首先需要将时间的纬度引入到当中,将这几个月纬度的数据进行对比,一定可以看到在安卓当中有一个月份的数值相比其他较低。然后我们再去看这个月份的情况。一般情况下,在找到这个异常会先从渠道的角度去分析,查看是哪个渠道发生了异常的现象。在针对性的去对渠道进行优化。

然后我们还可以从版本的角度去分析,去查看最近近期是否有新版本的更新,如果有新版本的更新,是否设置了新的功能出现了BUG等问题无法解决,导致了用户出现卸载应用的情况。当然这些角度都要加入时间的纬度去判断。

另外,数据异常也不一定是坏事情。比如在分析用户行为的过程中,如果发现了某些类别的用户的关键指标表现良好,那么就一定要分析为什么这些用户的数据表现为什么十分良好,这也是增长黑客的分析思路。比如在facebook早期发现,如果一名用户在刚使用产品的早期可以快速添加10明好友以上的用户,这类的用户的活跃程度就明显高于其他的用户。在比如airbnb在早期发现那些放置的照片十分精美的住家的出租率较好,发现了这个特性后,内部产品技术团队又进行了一次AB测试,发现果然是存在这样的优化点。

所以在早期一个关键的指标就是如何能快速提高用户添加其他好友的数量。这里需要我们从底层数据分析当中要注意对用户进行分层的处理,从不同的纬度分层找到数据异常的族群,找到共性,归纳表现良好的用户的共性,然后将其作为优化的指标进行优化。

4.关键指标应随产品阶段性变化

在做数据分析的之前,需要我们对我们分析的目标进行确认,每个阶段的目标也存在着不同的目标,是为了增强用户粘性,还是为了提升营收,或者是为了提高病毒传播系数。

比如在对渠道的判断中,不能只关心拉过来的新用户量,最重要的是我们要关心这些新拉过来的用户对产品的关键指标的影响,比如在社区产品,相比新进用户的数量更应该关心这些用户的活跃度,发布帖子的数量,点赞的数量等关键指标。换句话说更应该关注的是漏斗模型最下方的那个量,关注转化率的最底层的那个数据。

数据分析师面试常见问题有哪些?

1、如何理解过拟合?

过拟合和欠拟合一样,都是数据挖掘的基本概念。过拟合指的就是数据训练得太好,在实际的测试环境中可能会产生错误,所以适当的剪枝对数据挖掘算法来说也是很重要的。

欠拟合则是指机器学习得不充分,数据样本太少,不足以让机器形成自我认知。

2、为什么说朴素贝叶斯是“朴素”的?

朴素贝叶斯是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。

3、SVM 最重要的思想是什么?

SVM 计算的过程就是帮我们找到超平面的过程,它有个核心的概念叫:分类间隔。SVM 的目标就是找出所有分类间隔中最大的那个值对应的超平面。在数学上,这是一个凸优化问题。同样我们根据数据是否线性可分,把 SVM 分成硬间隔 SVM、软间隔 SVM 和非线性 SVM。

4、K-Means 和 KNN 算法的区别是什么?

首先,这两个算法解决的是数据挖掘中的两类问题。K-Means 是聚类算法,KNN 是分类算法。其次,这两个算法分别是两种不同的学习方式。K-Means 是非监督学习,也就是不需要事先给出分类标签,而 KNN 是有监督学习,需要我们给出训练数据的分类标识。最后,K 值的含义不同。K-Means 中的 K 值代表 K 类。KNN 中的 K 值代表 K 个最接近的邻居。

  • 评论列表:
  •  依疚末屿
     发布于 2022-07-08 05:12:08  回复该评论
  • 为看上去很大,但是你可能没有看到同期的数据,有可能昨天的数据达到了2W。第一,好的数据一定是首先最好是以比率的形式存在的,不要绝对数,要相对数据。比如上面的那个数据我们换成增长率,换成环比这个数
  •  温人情票
     发布于 2022-07-08 03:07:55  回复该评论
  • 欺骗性,比如从运营同学那得到了日新增用户数1W,那么单纯看这个数据没有什么意义,我们可以说这个数据很好,因为看上去很大,但是你可能没有看到同期的数据,有可能昨天的数据达到了2W。第一,好的数据一定是首先最好是以比率的形式存在的,不要绝对数,要
  •  纵遇假欢
     发布于 2022-07-08 00:48:09  回复该评论
  • t(结果)四个维度的追问项目经验,从而深入了解面试者的能力和特质重点通过面试者具体在何时,在什么样的项目环境、范围中,以什么样的团队分工,用怎样的知识技能经验,具体完成什么任务?并包括对困难的处理,对结果的反思。2、基本工具:互联网公司的数据分析师使用Excel+SQL
  •  辙弃野梦
     发布于 2022-07-08 00:49:03  回复该评论
  • 侧面反映出这个数据的真实情况。第三,数据不是一成不变的情况,要动态的去看数据。单纯只看一个点的数据情况是没有意义的,我们要在数据中加入时间的纬度。引入一段单位的时间去看待数据整体的变化趋势,这样才能更为客观的判断产品的健康程度。3.发现
  •  边侣乙白
     发布于 2022-07-08 05:51:07  回复该评论
  • 类问题。K-Means 是聚类算法,KNN 是分类算法。其次,这两个算法分别是两种不同的学习方式。K-Means 是非监督学习,也就是不需要事先给出分类标签,而 KNN 是有监

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.