黑客24小时接单的平台

黑客服务,黑客业务,破解密码,网站入侵,入侵网站

ab测试增长黑客(增长黑客这本书讲的是什么)

本文导读目录:

什么是 A/B 测试

1.什么是A/B测试

随着移动互联网流量红利、人口红利的逐渐衰退,越来越多的产品运营开始关注数据驱动的精细化运营方法,期望通过精细化运营在一片红海中继续获得确定的用户增长,而A/B测试就是一种有效的精细化运营手段。

简单来说,A/B测试是一种用于提升App/H5/小程序产品转化率、优化获客成本的数据决策方法。在对产品进行A/B测试时,我们可以为同一个优化目标(例如优化购买转化率)制定两个方案(比如两个页面),让一部分用户使用

A 方案,同时另一部分用户使用 B 方案,统计并对比不同方案的转化率、点击量、留存率等指标,以判断不同方案的优劣并进行决策,从而提升转化率。

2. A/B测试的价值

对于互联网产品来说,通过A/B测试提升点击转化率,优化获客成本已得到越来越多的关注。以获客环节为例:许多产品都会在百度、头条等渠道投放落地页广告,以完成新用户的注册转化,而落地页效果的好坏,会直接影响转化率和获客成本。以每月200万投放费用为例,如果通过A/B测试将落地页的注册转化率有效提升20%,相当于每月能多获得价值40万推广成本的新用户。

如果不使用A/B测试,而是根据经验,直接上一个落地页呢?在回答这个问题之前,我们先来看看我们在做产品决策时,常面临的一些挑战:

产品优化依靠经验主义,不能保证新的产品版本一定会有业绩提升

重大产品功能很难决策,不确定哪个方案效果最优

“后验”成本高,如果改版失败,业绩损失无法挽回

从这些挑战中我们可以看到,如果我们在产品上线时不做A/B测试的话,一方面不能保证上线的版本转化率等指标一定是最优的,其次还面临着因产品改版失败带来的用户流失、业绩损失的风险。实际上,随着业务的发展,产品迭代体系的逐渐成熟,新功能上线时必须做A/B测试的紧迫性会越来越高,因为改版失败的风险越来越大,而用户的习惯也越来越难以捕捉,所以A/B测试的必要性会越来越高。

3. 如何开展A/B测试

开展A/B测试,可以分为6个步骤:

确立优化目标。

分析数据。

提出想法。

重要性排序。

实施A/B测试并分析实验结果。

迭代整个流程,进行下一轮A/B测试。

A/B测试工具开发,涉及到数据监测系统、大数据处理等,除了BAT等大体量公司,一般都选用已有的SaaS服务,目前比较成熟的有TestinData.AI(Testin A/B测试服务,近期宣布永久免费)等服务。目前随着黑客增长概念的普及,应用A/B测试逐渐成为日常操作。

希望能够帮助解决楼主的问题。

吆喝科技ab测试怎么样阿?

挺好的,售后和客服特别好!也很有耐心,如果同城他们还会上门手把手教你,特别有礼貌的小哥哥!

人人都应学会的4个数据分析思路

人人都应学会的4个数据分析思路

数据分析能力对于一名产品经理来说是最基本的能力。

在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产品优化;校招的面试官可能会问小伙伴们关于分析数据的思维;在产品经理的日常工作当中,要时长盯着数据的报表来分析产品的健康程度。本文不再对一些基本的数据定义再做描述,而是从分析的思路总结了一些心得,欢迎各位一起来讨论。

1.看数据的维度

在对一款产品或者一款产品的其中的一个模块进行分析时,我们可以从两个大维度去分析数据。

首先是从广阔的视角先去查看数据,这里需要对该产品所处的行业数据有一个清晰的了解,该产品所处的行业自己所处的市场占有率的排名,一般市场占有率指的是用户的占有量,一般从行业报告可以看出大概的数据。

然后接下来需要分析这款产品的总的数据情况,比如下载量、DAU、WAU、MAU等,以及该产品的最核心的数据是什么,并且如何有可能从侧面去了解这款产品的竞品的相关数据是什么。

当了解完以上这些总体的信息,我们心中应该对自己所负责的产品有了一个宏观的概念,自己在行业内所处的位置,以及现在最需要提升哪些数据指标都有了一个清晰的认识。接下来就可以从大纬度切入到小纬度,进一步去分析一些细节的数据。例如重要的数据信息,包括用户的基本的构成信息,每个模块自己建立的漏斗信息等。一般在做分析的时候应该注意的是数据的异常现象,出现局部的极值(包括极大值和极小值)都需要进行分析。

2.什么才是好的数据指标?

在做数据分析的过程中,我们需要了解什么样的数据才是好数据,如果单纯地去看一个数据是没有太大意义的,数据本身也具有相应的欺骗性,比如从运营同学那得到了日新增用户数1W,那么单纯看这个数据没有什么意义,我们可以说这个数据很好,因为看上去很大,但是你可能没有看到同期的数据,有可能昨天的数据达到了2W。

第一,好的数据一定是首先最好是以比率的形式存在的,不要绝对数,要相对数据。

比如上面的那个数据我们换成增长率,换成环比这个数据,我们就可以进一步的了解到这个数据的好坏。

第二,就是通过对比来判断数据的好坏。

我们将数据的日增长量做成一个折线图,从折线图我们就能看出这个数据是在高点还是在低点。通过对比,我们就会得知这个数据所处的位置是什么样的。另外,通过对比不同的渠道,对比不同的版本,对比不同的用户群等不同纬度的数据,都可以从侧面反映出这个数据的真实情况。

第三,数据不是一成不变的情况,要动态的去看数据。

单纯只看一个点的数据情况是没有意义的,我们要在数据中加入时间的纬度。引入一段单位的时间去看待数据整体的变化趋势,这样才能更为客观的判断产品的健康程度。

3.发现数据异常后如何分析?

有时候从总量的角度是无法洞察出一些问题的。比如在某段时间内,下载量出现了下跌,我们需要去找到这个当中问题出现在哪里。从总量的角度看,安卓的渠道要比IOS的总量大很多,这并不能说明问题。那么我们首先需要将时间的纬度引入到当中,将这几个月纬度的数据进行对比,一定可以看到在安卓当中有一个月份的数值相比其他较低。然后我们再去看这个月份的情况。一般情况下,在找到这个异常会先从渠道的角度去分析,查看是哪个渠道发生了异常的现象。在针对性的去对渠道进行优化。

然后我们还可以从版本的角度去分析,去查看最近近期是否有新版本的更新,如果有新版本的更新,是否设置了新的功能出现了BUG等问题无法解决,导致了用户出现卸载应用的情况。当然这些角度都要加入时间的纬度去判断。

另外,数据异常也不一定是坏事情。比如在分析用户行为的过程中,如果发现了某些类别的用户的关键指标表现良好,那么就一定要分析为什么这些用户的数据表现为什么十分良好,这也是增长黑客的分析思路。比如在facebook早期发现,如果一名用户在刚使用产品的早期可以快速添加10明好友以上的用户,这类的用户的活跃程度就明显高于其他的用户。在比如airbnb在早期发现那些放置的照片十分精美的住家的出租率较好,发现了这个特性后,内部产品技术团队又进行了一次AB测试,发现果然是存在这样的优化点。

所以在早期一个关键的指标就是如何能快速提高用户添加其他好友的数量。这里需要我们从底层数据分析当中要注意对用户进行分层的处理,从不同的纬度分层找到数据异常的族群,找到共性,归纳表现良好的用户的共性,然后将其作为优化的指标进行优化。

4.关键指标应随产品阶段性变化

在做数据分析的之前,需要我们对我们分析的目标进行确认,每个阶段的目标也存在着不同的目标,是为了增强用户粘性,还是为了提升营收,或者是为了提高病毒传播系数。

比如在对渠道的判断中,不能只关心拉过来的新用户量,最重要的是我们要关心这些新拉过来的用户对产品的关键指标的影响,比如在社区产品,相比新进用户的数量更应该关心这些用户的活跃度,发布帖子的数量,点赞的数量等关键指标。换句话说更应该关注的是漏斗模型最下方的那个量,关注转化率的最底层的那个数据。

什么是ab test

1.什么是A/B测试

随着移动互联网流量红利、人口红利的逐渐衰退,越来越多的产品运营开始关注数据驱动的精细化运营方法,期望通过精细化运营在一片红海中继续获得确定的用户增长,而A/B测试就是一种有效的精细化运营手段。

简单来说,A/B测试是一种用于提升App/H5/小程序产品转化率、优化获客成本的数据决策方法。在对产品进行A/B测试时,我们可以为同一个优化目标(例如优化购买转化率)制定两个方案(比如两个页面),让一部分用户使用 A 方案,同时另一部分用户使用 B 方案,统计并对比不同方案的转化率、点击量、留存率等指标,以判断不同方案的优劣并进行决策,从而提升转化率。

2. A/B测试的价值

对于互联网产品来说,通过A/B测试提升点击转化率,优化获客成本已得到越来越多的关注。以获客环节为例:许多产品都会在百度、头条等渠道投放落地页广告,以完成新用户的注册转化,而落地页效果的好坏,会直接影响转化率和获客成本。以每月200万投放费用为例,如果通过A/B测试将落地页的注册转化率有效提升20%,相当于每月能多获得价值40万推广成本的新用户。

如果不使用A/B测试,而是根据经验,直接上一个落地页呢?在回答这个问题之前,我们先来看看我们在做产品决策时,常面临的一些挑战:

产品优化依靠经验主义,不能保证新的产品版本一定会有业绩提升

重大产品功能很难决策,不确定哪个方案效果最优

“后验”成本高,如果改版失败,业绩损失无法挽回

从这些挑战中我们可以看到,如果我们在产品上线时不做A/B测试的话,一方面不能保证上线的版本转化率等指标一定是最优的,其次还面临着因产品改版失败带来的用户流失、业绩损失的风险。实际上,随着业务的发展,产品迭代体系的逐渐成熟,新功能上线时必须做A/B测试的紧迫性会越来越高,因为改版失败的风险越来越大,而用户的习惯也越来越难以捕捉,所以A/B测试的必要性会越来越高。

3. 如何开展A/B测试

开展A/B测试,可以分为6个步骤:

确立优化目标。

分析数据。

提出想法。

重要性排序。

实施A/B测试并分析实验结果。

迭代整个流程,进行下一轮A/B测试。

A/B测试工具开发,涉及到数据监测系统、大数据处理等,除了BAT等大体量公司,一般都选用已有的SaaS服务,目前比较成熟的有TestinData.AI(Testin A/B测试服务)等服务。目前随着黑客增长概念的普及,应用A/B测试逐渐成为日常操作。

希望能够帮助解决楼主的问题。

什么是AB测试

AB测试则是中国英语考试制度A级难度与B级难度。

1、在这个教育,科技,经济高速发展的时代,教育问题是国民一直关注的焦点,少年强则国强,英语也在很多年前就已经成为我国教育体系中必不可少的一项科目。但是在英语的考试和等级制度上是有着严格规定的。

2、专业英语等级制度在中国分为B级、A级、4级、6级(按照难度从左至右排序)有一些职业和专业对于英语等级是有着相关规定的,比如英语翻译,外国企业的员工,在应聘外企的时候,外语水平则异常关键,这将关系到你是否会被录用。

数据分析师常用的数据分析思路

01 细分分析

细分分析是数据分析的基础,单一维度下的指标数据信息价值很低。

细分分析法可以大致分为两类,一类是逐步分析,如:来北京市的访客可分为朝阳和海淀等区;另一类是维度交叉,如:来自付费SEM的新访客。

02 对比分析

对比分析主要是把两个有关联的数据指标进行相互比较,从数量上说明和展现研究对象的规模大小,水平的高低,速度快慢等方面的相对值,然后通过在一样的维度下的指标数据对比,可以发现,找出业务在不同阶段的问题。

03 漏斗分析

转化漏斗分析是数据分析师进行业务分析的基本模型,我们最经常见的就是把最终的转化设置为某种目的的实现,最典型的就是完成交易。但也可以是其他任何目的的实现,比如一次使用app的时间超过10分钟。

04 同期群分析

同期群(cohort)分析在数据分析运营领域相当重要,尤其是互联网运营,特别需要仔细观察留存的情况。通过对性质完全一样的可对比群体的留存情况的比较,来分析哪些因素影响用户的留存。

05 聚类分析

聚类分析具有简单,直观的特征,网站分析中的聚类主要分为:用户,页面或内容,来源。

用户聚类主要体现为用户分群,用户标签法;页面聚类则主要是相似,相关页面分组法;来源聚类主要包括渠道,关键词等。

06 AB测试

增长黑客的一个主要思想之一,是千万不要做一个大又全的东西,相反是需要不断做出能够快速验证的小而精的东西。快速验证,那如何验证呢?主要方法就是AB测试。

07 埋点分析

只有采集了足够的基础数据,才能通过各种分析方法得到需要的分析结果。

通过分析用户行为,并细分为:浏览行为,轻度交互,重度交互,交易行为,对于浏览行为和轻度交互行为的点击按钮等事件,因其使用频繁,数据简单,采用无埋点技术实现自助埋点,即可以提高数据分析的实效性,需要的数据可立即提取,又大量减少技术人员的工作量,需要采集更丰富信息的行为。

08 来源分析

流量红利消失,我们对获客来源的重视度极高,如何有效的标注用户来源,至关重要。

传统分析工具,渠道分析仅有单一维度,要深入分析不同渠道不同阶段效果,SEM付费搜索等来源渠道和用户所在地区进行交叉分析,得出不同区域的获客详细信息,维度越细,分析结果也越有价值。

09 用户分析

众所周知,用户分析是互联网运营的核心环节,通常用到的分析方法有:活跃分析,留存分析,用户分群,用户画像,用户细查等。可将用户活跃细分为浏览活跃,互动活跃,交易活跃等,通过活跃行为的细分,掌握关键行为指标。

10 表单分析

表单分析中的填写表单,这个环节是每个平台与用户交互的必有环节,一份完美的表单设计,对客户转化率的提升有至关重要的作用。

用户进入表单页面,这时候就已经产生了微漏斗,从进入的总共的人数到最后完成,并且成功提交表单人数,这个过程之中,有多少人开始填写表单,填写表单时,遇到了什么困难导致无法完成表单,都影响最终的转化效果。

有关数据分析师常用的数据分析思路的内容,青藤小编就和您分享到这里了。如果您对互联网大数据有着浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于大数据、数据分析师的技巧及素材等内容,可以点击本站的其他文章进行学习。

用能数据分析怎么做?

对比分析顾名思义就是将两个或两个以上的数据进行比较,分析它们之间的差异,从而发现数据的变化情况和规律。对比分析法分为静态比较和动态比较两类,用来判断某个数据是好还是坏,以及某几个数据之间的差异性。

对比分析怎么比呢?一般在数据分析中我们可以从这样几个角度进行对比

时间对比:同比、环比、变化趋势

空间对比:不同城市、不同产品对比

目标对比:年度目标、月度目标、活动目标

用户对比:新用户vs老用户、注册用户vs未注册用户等

竞品对比:渠道、功能、体验和流程、推广和收入

分类分析

分类分析就是把分析对象总体中具有不同性质的对象区分开,把性质相同的对象合并在一起,保持各组内对象属性的一致性、组与组之间属性的差异性,以便进一步运用各种数据分析方法来揭示内在的数量关系,最终目的是为了方便对比,所以经常和对比分析法一起用

分类分析一般有以下几种分类方法:

不同时间分组:日、周、月、年等

不同产品类型分组:产品属性;产品区域

不同用户类型分组:人口属性(性别、年龄);客户价值;消费频次

不同渠道分组:线上渠道、线下渠道;付费渠道、免费渠道

案例 :在分析某App的留存率的时候发现有下降趋势,为了更好的定位问题所在,对不同渠道的留存率进行了分组分析,通过分析发现留存率降幅明显的是IOS渠道和应用市场渠道,且因为这两个渠道的用户量占比最大,应该对于整体留存率的影响最大;再通过对这两个渠道的订单完成情况分析,发现接单情况对留存的影响最大,对于完成订单接单时间越长留存越差,对于发布订单未接单率越高留存越差。所以,目前应该提高接单率以及提升完成订单的时效性。

了解了最基础的分类和对比分析法,下面我就从分类对比的角度去帮助大家理解数据分析常用的5个方法:转化漏斗分析、同期群分析、AB测试、用户来源分析、矩阵分析

转化漏斗分析

转化漏斗分析是最常用的一种模型,也是增长黑客理论的基础。特别适合有交易型的业务

最典型的例子就是电商行业。获得了多少新用户(浏览),多少用户被激活(注册),多少用户还来光顾网站(留存),多少用户购买了产品(收入),多少用户帮助推广(传播)。漏斗主要帮助我们解决在哪个环节用户的流失最多

转化漏斗也是一个分类对比的过程。分类是把用户的行为过程分成了5个步骤,对比是看用户在哪个步骤中流失严重。比如用户在注册的阶段流失严重,推测是不是注册过程太繁琐,体验太差导致的,我们就可以对症下药。

  • 评论列表:
  •  南殷囤梦
     发布于 2022-06-02 13:16:42  回复该评论
  • 关键指标表现良好,那么就一定要分析为什么这些用户的数据表现为什么十分良好,这也是增长黑客的分析思路。比如在facebook早期发现,如果一名用户在刚使用产品的早期可以快速添加10明好友以
  •  酒奴长野
     发布于 2022-06-02 13:35:16  回复该评论
  • 、点击量、留存率等指标,以判断不同方案的优劣并进行决策,从而提升转化率。2. A/B测试的价值对于互联网产品来说,通过A/B测试提升点击转化率,优化获客成本已得到越来越多的关注。以获客环节为例:许多产
  •  忿咬风渺
     发布于 2022-06-02 06:24:28  回复该评论
  • 3. 如何开展A/B测试开展A/B测试,可以分为6个步骤:确立优化目标。分析数据。提出想法。重要性排序。实施A/B测试并分析实验结果。迭代整个流程,进行下一轮A/B测试。A/B测试工具开发,涉及到数据监测系统、大数据处理等,

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.